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ABSTRACT

Di crete renewal processes, until recently, have not bLzen aj
to the mathematical modelling of physical processes. Analyses of such
renewal processes have proceeded on the basis of generating Iunctions

but the results are often tco complicated tc be of uce. This paper
presents an alternative approach to discrete renewal theory and cal-

culates many of the more complex statistics of such processes.
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I. INTRODUCTION

A renewal process is one in which events occur at time tj ac-
cording to the behavior of some underlying stochastic mechanism.

When the event occurs, the stochastic mechanism is renewed (i.e., re-

of, the previous ones. )

The mathematical analysis of reliability and queuing problems
has resulted in a great deal of literature devoted to continuous time
renewal theory (i.e., the events can occur at any time). Aside from
the volumes devoted to the applications of the theory, virtually all
books on stochastic processes devote at leavt a section, if not a

chapter, to its discussion.

Discrete time renewal processes (i.e.. the events can occur at
only fixed times) have, unfortunately, not enjoyed such a wide ex-
posure either by virtue of their apparent intractability or thr lack
of an obvious application. Recently, however, applications"z have
arisen wherein a discrete time vrenewal process appears to bhe quitu
useful, To be specific, the error process in digital communications
systers has been modelled by a discrete tiwe renewal process. Anotner
prccess being modelled by a renewal process, at Bell Telephone Labo-
ratories, is the typing ot characters on teletypewriters. This lattor
application is quite important incofdr as eflicient communicdtions
. 'stems are being sought for the remote programming oi time-shared

computIrs.®

wle
While present typewriters are buasically asynchronous, new Bell Sy:toem
models will operate in a synchronous manner.




The discrete time renewal process would, no doubt, be quite use-
ful in the modelling and analysis of those cystems in which events
were fixed to occur at specific instants in time. The growth of digi-
tal technology has fostered the creation of such systems in communi-
cations and automata. It is the purpose of this paper*, therefore, to
investigate the statistics of such prccesses in order to facilitate

their use in practical problems.

The statistical mechanism governing the renewal events can be
described in the following manner. Consider the non-negative random
variable X, which for the purpcses of discussion, is called the fail-
ure time of a component. This varieble is the length of time between
renewal events. The distinction between the continuous time and the

discrete time theory is made as follows:

(a) The random variable has a continuous distribution over the
range (0,=), its distribution being determined by a proba-
bility density function, f(x). This is the continuous case
and is discus: . in great detail by Cox3 and will not be
examined here.

(b) There is a constant, T, such that the only possible values
of X are (T, 2T, +..). The process is delermined by itlec
gap length dictribution, p(j), which is the probability
that X = jT. This latter rase is the discrete renewsl ;roc-
e3¢ . Fellera’5 devotes a far from insignificant portion o1
his books to this theory, but hic work Jdoce not lond it-
sell to practical (¢.g., actually calculating numbers) ap-

plica*ions.

The approach tuken by Feller, as well as Hdighte, has been
to use the generating function of X. This paper will pre-
sent an alternative way of looking at discrete time roencwal
processes and, in particular, will present relatively cimple
expressions {for some of the more complicated statisticy of

such processes .

“he work on this papser was done in the period March-June 19¢&,
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1I. ELEMENTARY STATISTICS

The discrete rencwAl process, by definition, has gaps (length of
timc between failures) whose lengths are independent and are distrib-
uted according to a common distribution. Let p(j) be the probability
that following a failure, the next failure occurs at jT. For ease of
desgription, a trial is said to be made at every T. That is, p(j) -
P(OJ—l l[l) where 1 denotes a failure, 0 denotes a non-failure¥® and oi
corresponds to i successive zeroces. The gap length distribution has
the following properties:

2 p(j) =1 (1)
3=l

and that the average failure rate, Py 1s equal to the veciprocal of

the average distance between failures.

© -1
SN DTGP ¢
j=1

~—t

A glternative Jdefinition of tailiure rate

0. = lim E{mumbcr 01 lallure: 1nAjO,JX§
' J
J-«m

[

% . . . N PR e
A non-failure wiil also be called a cuccess.




Let

Q(m) =3 p(3) (3)

j=m+l

That is, Q(m) is the probability of there being at least m consecutive
Successes following a failure. Now, consider the event where there

are m successes before a failure (i.e., Oml). The probability of this
event is

m
P(0"1) = py-py J P =y Q) (4)
J:

Note that P(Oml) = P(1 Om). This facilitates the calculation of the
probability of some rather complicated events.

In many applications, the probability of m failures out of n
trials, P(m,n), is important.* This is often called the counting sta-

tistic. Elliott7 has developed an equation for P(m,n) for a renewal
process.

n-m+1l
P(m,n) = Py Q(3-1) R(m,n-3+1) lsmsn (5)
j=1

where R(m,n) is the probability that m-1 failures occur in the n-1
trials following a failure. Therefore, R(1l,n) = Q(n-1l) for n = 1 and

n-m+l
R(m,n) = E P’j) R(m-1, n-j) 2<m<n (&)
j=1

“This probability assumes no knowledge of the failures in the trials
preceding the n trial sequence under investigation.



It ic to be noted that P(m,n) can be expressed in termes of Py and
p(j), for j < n. Several of the above parameter: and distributiont
dre andalogous to those in continuous time renewal processes.  Four ox-
ample, p(j) = f(x) and Py S .

It is at this point that it is worthwhile to compare the g¢im; lic-
ity of the above exprescionc with thoce available through the use f
generating functions. Let g(z) and G(z) be the generating function:

associated with p(j) and Q(j), respectively. That is,

x

g(z) = ., p(3) =’ ("
=1

and

j=1
From Eguation
. l-gz
U('.:) 2 A ) N )
1-2
Lottt ine
[ -]
H \-':" E &‘\T'a )
n-m




i ddteornatively

H (2) = plz[%fgiggr [g(zﬂm-l .

(12)

Calculation of P(m,n), as Elliott puts it, is rather inconvenient when
coi:spared to Equation 5. Generating functions do turn out to be quite
useful for certain prcoblems in renewal theory, but it is noted that
the recurrence equation appruach for P(m,n) is ideally suited for
cdleulations done on a computer.

In addition to the gap length distribution, the "autocorrelation"
of the failures is often quite useful. The autocorrelation, a(j), is
defined as the probability that, following a failure, a failure occurs
at X = 4T. For a renewal process, however, the autocorrelation can
be derived from the gap length distribution.

Jj=1

a(j) = p(3) + p(s) a (3-s) for j>1 (13)

s=1

where a(l) = p(l) and a(0) = 1. Therefore a renewal process can be
ceceribed by p(j), a(j) or P(m,n). Feller4 has also proven that
1im iy
jo @ a(j) = py-

A rencuwal process ¢ interest ic one in which

v
—

a(3) = a8” + p B <1 . (14)

Thic is the autocorrelation Gilbert8 obtains in his Markov model. It
happens that this simple model generates a renewal process while the

€



.9 . . .
Berkovits™ model, which has the same autocorrelation, is not & reneweal
process.* For a renewal process with this autocorrelation, and if
Py << gB7 for j € N, then

a(j) =~ a8’ . (1)
From Equation 13
p(j) = aBJ(l-a)J'l . (16>
Then if a8 ~ 1
IR Y
+1 m
_ 1Bm‘r. 1-a ;
Q(m) - T_l:a(l'ﬂ. ) (-‘-7)
and
n-1 m.n,. n-m
= a8 (l-a)
R(myn)= (ﬂ-l) TT-57(1-a)] . (18)
Using Equation S
(n) m+l .n+l n-m
P(m:n) = py ) & g (143) lsmsn . (1)
M-g(l-a)?

At thic point, it is apparent that & Bernoulli n~rocesc (i.e.,
ore in which each trial is independent of the others) is a renewal

srocess with

1(3) = po

I

p(3) = p(L-p)3™F ()

n
P(m,n) =(m) Pt (1-p)"

—

*The tact that processes have the same autocorrelations docs not imply
that trey have the same gap length distributions unless thev dare both
v newdl processes.,




ITT. COMPLEX STATISTICS

A. COMPOUND COUNTING DISTRIBUTION

The fact that there may be a correlation between failures raises
the impertance of the comgound counting statistic, P(ml,mQ,...,m:,N).
This probability corresponds to the following: Ceonsider a sequence
2f mN trials, as shown in Fig. 1, which are divided into N subsequencec

. .th :
of n trials each. In the 1 subsequence there are ms failures
J <m. sn
1

The first failure in the ith subsequence 1is preceded by 4. - 1 suc-
cesses and the last failure is followed by a; - Li successes. The
failures are clustered in an interval ¢f length n - a, + 1. This con-
tinues until the last n trials where my 1 failures vccur in the last
m - &N trials though not necessarily ending in a failuve. The Dhlack
bars show the beginning and end of an m, failure cluster in each n
trial subsequence. To examine this case, first let S(m,n) be the prob-
ability that (m - 1) failures occur in the (n - 1) trials following a
failure, and that the (m - l)-s-E failure is at the (n - 1)53 trial.

S(m,n) obeys the following recurrence relution
n=n+1

S(m,n) = 2: S(m=1, n=-3j) p(3J) (1)

for 2 < m < n where $(1,1) = 0 and S(1,n) = 0 for n > 1. R(m,n) in-

rroduced in Equation 5 follows directly from S(m,n) since




n-m+l e

R(m,n) = 3 D s(m,n=3+1) p(i) . (22)
SR

l]-] il 12-

' Ry 1 02-12
piatie s ST T I e

1}

FIGURE 1. Failure Sequence for Complex Counting Statistics

The general expression for the compound counting statistic is

P(my+mosees ymysN) = py ZZ
NCT N
(23)
N-1
Q44-1) Eﬁ(mj,n-aj+l)p(aj—l;j+£j+l+1) R (my 511 -4 +1)

where my > 0. The first (N-1) pairs of summations over aj and L_j ar
sumned as follows: »

n-m.+1 n-m.+1

‘ZJ ZJ for 1 s j =sN-1

L=l a.=L,
S B

and tne last summation is




Suppoce mj =0 (i.e., a group of trials has no failures). This

can happen in three way/s:

(i) If the n trial biock is the first block, omit S(m -al+l)

y N
and p(al-Ll+L2+l) and the associated summations aid change
Q(Ll-l) to Q(&l+n-l).

(ii) 1If the n trial block is the lasi block, then omit the term
R(mN,n-LN+l) and sum the last term p(a 2

the limits m < &N < @,

+1) over

N-1"tn-1

(iii) If the n trial block is internal, omit the respective
S(m., n-a.+l1 a,-4 .+ . .+1) term as well as the corre-
(nys n-as+l) pla -4+, +1)

spondiing summations over aj and Lj+ and change p(aj

-4
1 -1 73-1
+Lj+l) to p(aj_ul -Lj_l +Lj+ n + 1). The above process of

removing terms can be continued up to the point where only

4

one m. # 0 because Equation 23 assumes at least one renewal

event. For all m. =0,
J

> <]
P(0,..+,0,N) = by > am)
j:rnN

B. AGING

An interesting statistic often calculated for continuous renewal
processes is the age-specific failure rate. This is defined as the
probability of a failure between x and x+AX given it has not failed up
to x. For the discrete case it is defined as he prohability of a
tailure on the th trial given no failures up to, and including, the
(j-l)ELE trial with no knowledge of the trials preceding these j trials.

Denoting it by ©(j), one gets

o(3) = - .




If ©(j) increases with j it is said to have positive aging and
becomes more likely to fail. Some processes have a () that decreases

with j. There is however a process with no aging. Tha: is, let

o(3) =X
or (25)
-]
Q-1 =AY Qm -
m=j-1
Noting that Q{0) = 1 and E Q(m) = % yields
m=0 1
A= pl
and (26)
p(3) = p, (1-p)37"
1 1 ’

which is obviously the Bernoulli process.

C. BURSTS OF FAILURES

A simple extencion ~f the previous discussion is to consider
bursts of failures. A burst of length m is defined to be m consecu-
tive trials beginning and ending ... a failure. This does not require
all m trials to be failures, but unly the first and last. When con-
sidering n consecutive trials, the probability of it containing d
burcst of length m is denoted by B(m,n). Burcste of failires are of
considerable interest in many physical processes which may be modelled.
for example, errors in digital communications dare noted to be clasterod
(i.e., come in bursts) and error correcting cudes arce consiructed b
deal with these bursts. It is also noted that the hitting of ty; -
writer keys, which in this case corresponds to failure, occurs in lvieete

The examination of bursts of failures is thereiore inportant.

11




For the process described previously

B(m,n) = pl[a(m-l)] [p(n~m+1) + p(N=m+2)+¢e. ]
+ [1-p(1)] Py [a(m-1)] [p(n-m)+p(n-m+1)+... ] (27)

Feoe+[1-p(1)~p(2)=s.o~p(n=-m)] P (alm=-1)]

The first term in the above expression corresponds to the first fail-
ure of the burst in the first of the n trials; the second tem to
where the first failure is at the second trial; and the last term is
where the first failure of the burst is on the (n-m+l)§£-tria1. This
can be compactly written as

n-m

B(m,n) = pla<m-1>2:o Q(3)Q-m-3) (28)
J:

D. INTERLEAVING

A technique often used to overcome the effects of bursts is to
interleave the process. For example, in the case of digital trans-
mission, time division multiplexing M data streams such that two dig-
its originally adjacent in any one stream are transmitted M diagits a-
part spreads a burst of errors over the M streams and makes the errors
look almost as if they were randomly distributed in any one data
ctream. For the remote programming application, M parallel computer
input ports would be able to digest a burst of teletypewriter charac-
ters if each port accepted every Mth choracter. The nrobilem 95 now
to dandalyze the process obtained by examining every Mth trial of « dis-

crete renewal process.

The autocorrelation of the events in the interleaved prucess,
a(j,M), is obvicusly a(jM). The gap length distribution is now given
by




j-1
p(3,M) = a(3M) - 3, a(sM) p(j-s,M) 3 >1 (29
s=1

As M gets large,

lim a(jM) = 2 (.
M—o
Therefc-re
U j-1 N
lim p(j,M) = pl(l-pl) (31D

M—oo

and the process becomes a Bernoulli process.

E. FREEZE-0"'T PROBLEMS

The freeze-out problem arises when a physical device requires a
specific time interval to digest recorded data and cannot accept ad-
ditional data during that time interval. For example, an event occurs
randomly in time. When it cccurs a "counter" must record some anpro-
priate data. This recording period lasts, say, n seconds (or trials)
and if another event occurs during these n seconds it goes unrecorded
The probability of such an event for a discrete renewal process being
unrecorded is not examined directly but rather twa different measurcs
are used: the mean time to ar unrecorded cvent and the probability

01 at least one unrecordr ' event in N trials.

1. Mean Time to Unrecorded Event

If the probability that the first unrecorded event occurs on the
.th . . . . . = . .
~— trial is denoted by P., the the mean time to failure, T, iv alven
J Y ))

by




The guard space time to prevent a freeze-out is n-1 trials such that

if two events occur within any n trials, then the second is not re-
cor?ed. JTn the analysis that follows, the signal flow graph techniques
of Sittler'C and Huggins®> will be used. The state diagram of Fig. 2
is obtained where:

i is the state of having at least i successes (in this case
trials in which events do not occur) before the first failure (event);
i i1s the state of having at least i successes since the last

failure; and

El is the state of having a failure but not an unrecorded event.

Then letting q{a,b) be the probability of going to state b from state

o3}

3

i
l-pl;éo Q(m)

TT™T -
RICTEER I 1 (33)
1-p, 2. Q(m)
m=0
- py Q1)
a(1,E,) = -1 (34)
I-p, L Qm
m=0

a,in) = ()

a(i,B) = 5-&1-1-1 for i = n-1  (¢)

143
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q(i, unrecorded event) = 5%%§£2 for i s n-2 (37)

The flow graph can be reduced to that of Fig. 3. The "transmiscion

from start to freeze-out" is P(Z).

® n=-1 :
z A i) 2z
2L [z o]
P(z) = - -
1-3 p(j) 2’
j=n

If P(Z) were expanded as

- 2 3
P(Z) = PQ+PlZ+PQZ +...+Pju N (39)

the coefficient of Z7 is the probability of an unrecorded event on the

-

.th .
Vz-L—- trial.

Srort o e . Freeze-
Qar . n_] OU'
. m. 1
P Z L Qmz™ T )z
m‘O | |
Q (m) =  e) 1 -ptt)+ ... p(m)]

i“mﬂ
FIGURE 3. Reduced Stote Flow Groph for a Freeze~-Out of > Counter
Requiring a Guord Space of n-1

1
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From the definition of T,

= - 9B(Z) .
1== ” (40)
=1
and therefore
T=1+2 1 + i m Q(m)
p, TTw-D] * P1 & (41)

2. Freeze-Out in N Trials

The preceding analysis evaluated the mean time to freeze-out,
but this measure may have little significance to someone designing an
experiment teo record data. As an alternative, P(N), the probability
of at least one freeze-out in N trials will be examined.

N
P(N) = 9, P.
£ (42)

where

J
P. = %T g-%&&l

J - * daz (43)

=0

The complicated nature of P(Z) precludes this approach.

Another technique is to calculate Pj directly. For j<n + 1,
the only way to have a freeze-out on the th trial is to have only one
failure in the first j-1 trials. Then

17
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P, = §°
&

whoio the above expression has k successful trials before the first
failure. Ifn + 1< 3js< 2n + 1, a freeze-out on the th trial can

QM) py p(3-k-1) (4
0

occur because of a failure ia trials j - n + 1 to j - 1, or by two
previous failures. The probabilities are

Jj=2
2:_ Q(k) py p(i-k-1) (45)
:j-n
jm-2 32k-2 . .
and > 2: Q(k) Py p(r) p(j-k-r-1) , respectively.
k=0 r=n

Continuing in this vein becomes extremely difficult when one realizes
that if in + 1 < j £ (i + 1) n + 1 then it is possible to have m fail-

L.<5 prior to the failure causing the frecze-out where m = 1,
i -+ l-

¢ 0y

An alternative approach is to work backwards. It was shown in
Equation 4 that revercsing a pattern of failure does not alter the
probabilities involved. Then for a freeze-out on the th trial, there
can be at mest n - 2 successes preceding it after the previous failure.
Preceding that failure there is at least n - 1 successes and <o on.

The probability of a frecze-out on the jEh trial is now compactly ex-
pressed as

3

=1 j-(m-1)n j-(m=-2)n-r

l j -I’\-I"l .. .-I‘m_2
P, = E 2: P, P(r,)

o—':l rl=n r2=n

Lp]

r =n
m-1

p(ry)ee (T 1) QT =ry=.oemr 1) (46)

18




where m is defined above. The only exception to the above occurs
in + a where 1 < @ < n in which case Equation

whenm =1 + 1 and j =
46 becomes
a-1
- i s
P, = 9 By TpmIT pO) Q(3-ry-i-in) (47)

r =1
o)

Here again, as in the previous statistics, a complicated probability
is obtained in a form directly amenable to computer calculation where-

in the only data needed is Py and p(j) for j < N - 2.

19
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